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ABSTRACT

While numerous works study algorithms for predicting item
ratings in recommender systems, the area of the user-
recommender interaction remains largely under-explored. In
this work, we look into user interaction with the recommen-
dation list, aiming to devise a method that allows users to
discover items of interest in a minimal number of interac-
tions. We propose generalized linear search (GLS), a combi-
nation of linear and generalized searches that brings together
the benefits of both approaches. We prove that GLS performs
at least as well as generalized search and compare our method
to several baselines and heuristics. Our evaluation shows that
GLS is liked by the users and achieves the shortest interac-
tions.
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INTRODUCTION

Recommender systems are widely used in eCommerce sites
and online social networks as a means to help users cope with
the information overloading. The recommenders select, in a
personalized manner, a set of items from a substantially larger
set of candidate items and present the recommended items to
users. The selection is based on the predicted ratings, reflect-
ing the match of the items to the preferences and needs of
the users. Normally, IV top-scoring items are included in the
recommendation list.

Although numerous works focused on the algorithms for im-
proving the accuracy of item selection [20], little research
looked into the intricacies of the presentation of recommen-
dations [11]. The canonic way of presenting the recommen-
dations is through a list, the items of which are ordered ac-
cording to their predicted rating. The choice of the item to
consume — a movie to watch, a product to buy, or a song to
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listen to — is done by the user upon examining the recommen-
dation list. To ease navigation, the list is normally is split into
small-size batches, such as 10 items per screen for a desktop
interface or 3-4 items for a mobile app.

For a large IV, the examination of the recommendation list
can be tedious. Consider also the challenge of choosing the
desired item out of a set of attractive recommendations, and
the importance of the recommendation list presentation that
allows easy discovery of items of interest becomes clear.

In this work, we focus on minimizing the length of user inter-
action with the recommender. We assume that the predicted
item ratings are computed by the recommender and leave the
details of rating computation beyond the scope of our work.
Given the predicted ratings, we focus on N top-scoring items,
assuming that an item of interest is included there. Note that
the user may not know the exact item they are looking for
and therefore cannot use the search functionality. However,
the user may be able to describe the features of the item of in-
terest (e.g., “something like that Irish black comedy I watched
last week”) and answer questions about the target item. We
aim at developing a method for the recommendation list pre-
sentation that facilitates the discovery of the target item in
least interactions (clicks, scrolls, etc.) between the user and
the recommender.

The simplest approach to searching recommended items is
what we refer to as linear search (LS): the items are ranked
according to their predicted ratings and the users scroll
through batches of items until they find the target item. A
natural generalization of LS is linear search with item cate-
gories (LS¢at), wWhich capitalizes on the knowledge of item
categories. Here, the users are first shown the list of item
categories, out of which they choose the category that best
matches the target item. Then the users search for the tar-
get item in a smaller list of items in the selected category.
This approach is adopted by several recommenders, e.g., the
‘bands’ interface deployed by Netflix. However, our simula-
tions show that the discovery of the target item with LS and
LS.t requires many user-recommender interactions.

But why does the item category selection occur only once?
Can this be repeated in order to carry out a hierarchical search
over dynamically computed item categories? This kind of
search can be considered as a question-answering game [26].
At each round of the game, the recommended items are dy-
namically split into K item categories, which are presented to
the user who selects the category of the target item. The game
stops when only a single item — the target item — is left. This
game is a form of active learning and is known as generalized



Interaction 1 of GLS
User is shown 8 categories (GS)

Interaction 2 of GLS
User is shown 8 categories (GS)

Interaction 3 of GLS
User is shown 8 categories (GS)

Interaction 4 of GLS
User is shown 8 movies (LS)

Action Thrillers
Foreign Regions
Ages 11-12
20th Century Period
Based on the Book
Classics
Drama
Something Else

Romance Classics
Mobster
Thrillers

Based on Bestsellers
Crime Dramas
Drama
Classic Dramas
Something Else

Contemporary Literature
Crime Thrillers
Mystery
Courtroom Dramas
Sci-Fi Horror
Crime Dramas
Based on Bestsellers
Something Else

Misery (1990)
Primal Fear (1996)
General’s Daughter (1999)
Silence of the Lambs (1991)
Dolores Claiborne (1994)
Pelican Brief (1993)
Boys from Brazil (1978)
Instinct (1999)

Figure 1. Searching for a movie like Silence of the Lambs (1991) with GLS. The choices of the user are highlighted in bold.

search (GS) [10, 12, 18, 5, 25]. In large-scale problems, GS is
expected to find the target item in less user interactions than
LS and LS.,:. The main limitation of GS is that the number
of interactions can be high when the space of recommended
items cannot be partitioned well into item categories.

In this work, we propose a combination of GS and LS, which
brings together the benefits of both approaches. GS is a hi-
erarchical approach and therefore it converges in O(log(NV))
interactions when the categories of recommended items are
sufficiently diverse. However, in the worst-case, all N items
may belong to the same category and GS may need (V) in-
teractions to find the target item. On the other hand, LS does
not depend on the item categories and is efficient when some
recommended items are more likely to be chosen than others.
We combine the two approaches and suggest switching from
GS to LS when the former is suboptimal. The pivotal ques-
tion here refers to the switching criterion, i.e., when to switch
from GS to LS. We argue that GS should be applied as long
as the expected length of user interaction in GS is shorter than
that in LS. We denote the proposed combined approach as
generalized linear search (GLS).

We illustrate GLS with an example of searching for a movie
like “Silence of the Lambs” (Figure 1). At the first interac-
tion, GS suggests 8 movie categories and the user selects the
best matching category, “Based on the Book”. The search
space gets reduced accordingly. At the second interaction,
the expected cost of GS is smaller than that of LS. There-
fore, GS suggest another 8 categories, the user selects the best
matching category, “Thrillers”, and the search space gets re-
duced again. The third interaction is still GS and the user
selects again a movie category. At the fourth interaction, the
expected cost of GS is larger than that of LS. Therefore, GLS
switches to LS and the user is shown 8 movies that are consis-
tent with the user’s previous answers. Then the user selects
“Primal Fear” as the desired movie. Overall, the length of this
user interaction is 4.

In this work, we prove that GLS performs at least as well as GS,
and compare it experimentally with GS and several heuristic
search methods. We evaluate the expected length of user in-
teraction with the recommender using two datasets and show
that GLS achieves shorter interactions than GS. We also show
that the expected length of GLS interaction is never longer
than that of the heuristic methods. However, the performance
of the heuristic methods requires an a-priori parameter tun-
ing, whereas GLS is parameter-free. We also conduct an intra-
group user study that compares the binary variants of GLS and

GS. The study shows that GLS achieves shorter interactions
and is easier to use. The subjects also express their direct
preference towards GLS.

Overall, the proposed GLS approach combines the state-of-
the-art in active learning with a widely used practical tech-
nique, and shows a significant improvement in using both. It
should be highlighted that GLS combines two existing search
methods, GS and LS, in an optimal way. The presented combi-
nation has several notable properties and contributions. First,
GLS is guaranteed to perform no worse than each of its parts,
GS and LS, and we prove this formally. Second, GLS requires
no tunable parameters and can be easily applied in practice.
Third, GLS improves significantly over both GS and LS, and
we show this by both offline experiments and a live user study.
In the experiments, we report improvements as large as 50%.

PRELIMINARIES

In this section, we discuss two policies for searching a list of
recommended items, LS and LS.,;. We evaluate the policies
on one problem and use this to motivate our work.

We formalize the problem of minimal interaction search as
follows. The user has a target item e* in mind, which belongs
to a set of N recommended items E = {1,...,N}. The
user cannot express what the item is, otherwise the user could
find the item using conventional search techniques, like text
search. The target item e* is drawn i.i.d. from the distribution
7 over items E. The distribution 7 is generated by a rec-
ommender and is known, but the target item e* is unknown.
The goal is to present items E to the user such that e* can be
discovered in least interactions. More formally, let A be an
interface for searching items E and N4 (e*) be the number of
user interactions with A until e* is discovered. Then our goal
is to design an interface that minimizes Eq~.[Na(e)].

Our abstraction of interactive search can model various prob-
lems. For instance, the search interface A can be a list of
items, which are ordered according to their popularity, or an
assistant on a mobile device that asks natural language ques-
tions. The interaction can be clicking on the screen of a de-
vice, scrolling down the list of items, or answering a natural-
language question.

Linear Search

Linear search (LS) is a form of search, where items F are
sorted in descending order according to their score. The
sorted items are then scanned by the user until the target item
e* is discovered. This search interface is prevalent in existing
recommender systems.



Algorithm 1 LS: Linear search.

Input:
Items V C E
Number of shown items L

Letey, ..., ey be an ordering of items V' such that:
7T(61) 2 Z W(e‘v|)

{+0

repeat

A+—{e, eV UL<i<({+1)L}
Show items A to the user
L+ (0+1

until (e* € A)

Output: Targetitem e* € A
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Figure 2. The length of interaction for three LS policies.

In this work, we assume that the items are divided into
batches of size L. For the sake of concreteness, and without
loss of generality, we assume that L is the number of items
displayed on the screen of a device. Therefore, the length of
interaction to find item e* is the number of screens that the
user has to scan until the target item e* appears on the screen.
The pseudocode of LS is in Algorithm 1. The score of item e
is the probability of choosing the item, 7 (e).

We present a motivational simulation, which compares three
LS policies that differ in the computation of the item scores.
The first policy scores items by their popularity, i.e., the num-
ber of times that the item was consumed. We refer to this
policy as popularity. The second policy scores items by their
expected rating, which is computed by averaging all the avail-
able ratings for the item. We refer to this policy as expected
rating. In the last policy, the score of the item is the actual rat-
ing assigned by the user. The score of unrated items is 0. This
policy is obviously unrealistic and cannot be implemented in
practice, because the ratings of recommended items are typi-
cally unknown. However, the policy can be viewed as a lower
bound on the length of interaction of any LS policy, under the
assumption that the true preferences of the user are known.
Therefore, we refer to this policy as perfect model.

We evaluate the expected length of user interaction with all
three policies using the MovieLens dataset, which is described
in detail in the evaluation section. The expected interaction

length is computed as follows. Initially, we randomly choose
a target user. Then, we randomly choose a target item e* from
the movies that the user liked, i.e., rated with 4 or 5 stars. All
movies are scored according to the chosen policy: popular-
ity, expected rating, or perfect model. Finally, we rank the
movies according to their scores and simulate LS until the
target item e* is found. The length of interaction is averaged
over all users and target items, and we vary the number of
shown items L from 2 to 8. The results of the simulation are
reported in Figure 2.

We observe two trends. First, the expected length of inter-
action in all three policies decreases with the number of dis-
played items L. This is expected; as L increases, the length of
interaction required to find a target item cannot increase. Sec-
ond, we observe that the predicted item score affects the ex-
pected length of interaction. In particular, the popularity pol-
icy consistently performs worse than the expected rating pol-
icy, which performs worse than the perfect model policy. In-
terestingly, popularity performs only slightly worse than ex-
pected rating, while perfect model significantly outperforms
the other two policies. On average, it finds the target item in
about 20% of interactions of the popularity policy.

Linear Search with Iltem Categories

Linear search with item categories (LS.t ) 1S a variant of LS,
where the users are first asked to choose the category of the
target item e*, out of K item categories. After the category
is chosen, all items in that category are searched using LS.
Note that LS., involves two types of user interaction. The
first interaction is choosing one item category out of /. The
remaining interactions are identical to LS — scanning the items
until the target item e* is discovered. This type of an interface
is not unusual; e.g., Netflix ‘bands’ allow users to choose a
movie genre and then scan through the movies in that genre.

LScat is parameterized by the number of item categories K
that are shown to the user. We represent each category as
aset ¢ C E such that e € ¢ if and only if item e belongs
to category q. The problem of choosing K item categories
is an optimization problem. Loosely speaking, the best K
categories partition the set of items F into K disjoint sets
of cardinality N/K each. In this case, the set F is reduced
to N/K items regardless of the item category chosen by the
user. In practice, such a partitioning is typically impossible
because the categories are not sufficiently diverse.

How to partition E into K item categories? We implement
a greedy strategy for choosing the categories that was pro-
posed by Bhamidipati et al. [5]. For a given K, we greedily
select K — 1 item categories q1, . . . , ¢k —1 Whose cardinality
is closest to N/ K. In addition, we define a special category,

gk < (g1 U...Uqk—1), which includes all items that do not
belong to any of the first K — 1 categories. The key advantage
of this strategy is that any item in F is guaranteed to belong
to at least one category qi. Therefore, the user can always
choose a category that matches the target item e*. After the
category gy, is chosen, the set of candidate items is reduced to
qr N E and we apply LS. The pseudocode of LS., is shown
in Algorithm 2.




Algorithm 2 LS_,.: Linear search with item categories.

Algorithm 3 GS: Generalized search.

Input:
Number of item categories K in a question
Number of shown items L

Choose K — 1 categories q1, . . .
qr <~ (@ U...Uqr_1)

Ask the user to choose one category
The user chooses category g

e* «+ LS(qx NE,L)

,qK—1 given EV and m

Output: Target item e*

Linear search with one question
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Figure 3. The expected length of LS., interaction.

We evaluate LS., using the same methodology as in the
earlier evaluation of the LS policies. We simulate K = 2,
K =4, and K = 8 item categories being shown to the user,
and compare LS., with these values of K to the popularity
and perfect model policies of LS. The results of the simulation
are reported in Figure 3.

We observe that splitting items into K categories and then
performing LS substantially decreases the length of user in-
teraction. A split into K = 2 categories decreases the length
of interaction by about 30%, consistently for any number of
shown items L. Notably, for K = 8, the expected length
of interaction by LS., is on par with the perfect model LS
policy. In other words, we show that a single piece of addi-
tional information provided by the user (choosing one item
category out of K') reduces the expected length of interaction
as much as knowing the exact ratings for the set of items that
are recommended to the user.

MINIMAL INTERACTION SEARCH
In this section, we present the generalized search and our
main contribution, generalized linear search (GLS).

Generalized Search

Generalized binary search (GBS) [10, 12, 18] is a greedy algo-
rithm for active learning, where the goal is to identify an item
of interest e* by asking a sequence of binary questions. A
question-answering policy that minimizes the expected num-
ber of asked questions is NP-hard to compute, and GBS is its
computationally efficient approximation. In particular, GBS
always asks a question that partitions the version space V,

Input:
Number of item categories K in a question

V«F

repeat
Choose K — 1 categories ¢y, . . .
qr < (@ U...Ugqk-1)
Ask the user to choose one category
The user chooses category ¢y
VeegnV

until (|V|=1)

,qr—1 given V and 7

Output: Target item e* € V

the set of the items that are consistent with the past ques-
tions and answers, most evenly in expectation. A remarkable
property of GBS is its theoretical guarantee to ask, in expecta-
tion, at most log(1/7yin ) times more questions than the opti-
mal policy, where i, = min.cg 7(e) is the probability of
choosing the least likely item.

In this work, we consider a generalization of GBS to multi-
way questions [5], which we refer to as generalized search
(GS). The search for the target item e* proceeds as follows.
The user is presented K item categories q1, . . . , ¢x and asked
to choose one. After the user chooses a category g, the
search space V' is reduced to the items that belong to that
category, ¢ N V. Then the user is presented another K item
categories. These categories may, and typically do, depend
on the previously chosen categories. The user chooses again
one category and this question-answering game continues un-
til the cardinality of the version space V" is one, and the target
item e* is found. Each round of this game is considered as an
interaction. The pseudocode of GS is shown in Algorithm 3.

GS can search high-dimensional spaces efficiently when the
item categories permit good partitioning of the version space.
This is not always possible in practice. For instance, consider
N = 100 items, where the probability of choosing the most
likely item is (1) = 0.99 and the item cannot be separated
from the rest of the items by a single question. In this case, LS
can identify the target item in a single interaction with at least
0.99 probability, because in 99% of cases the highest ranked
item by 7(e) is the target item. On the other hand, GS needs
to ask multiple questions to eliminate other items with at least
0.99 probability.

In previous section, we showed that a single split into K item
categories in LS, gains as much information about the target
item e* as knowing the exact item ratings. A natural question
to ask is “what happens if the user is asked to choose a cat-
egory of interest more than once”. Will the expected length
of interaction further decrease? To answer this question, we
simulate a modified variant of GS with K = 2 item categories.
Specifically, we fix the number of GS questions and switch to
LS either after this number of questions or when the cardinal-
ity of the version space is one. The methodology for choosing
users and items is identical to that in our earlier simulations.
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Figure 4. The expected length of interaction as a function of the number
of GS steps.

The overall length of interaction is the sum of the number of
interactions in GS and LS. The results of the simulation are
reported in Figure 4.

Interestingly, the expected length of interaction does not al-
ways decrease with the number of asked GS questions. In fact,
it starts increasing when GS asks more than 6 questions. For
instance, the expected length of interaction at 9 questions is
larger by one than at 6 questions. The reason for this behavior
is that asking questions is beneficial only if the version space
can be partitioned sufficiently well into K item categories.
Loosely speaking, if this cannot be done, it is preferable to
order items according to their popularity, from the most pop-
ular to the least popular, and ask the user to discover the target
item by scanning the items.

Generalized Linear Search

This observation motivates our work on the hybridization of
GS and LS that leverages the strengths of both approaches
to minimize the length of user interaction. Specifically, we
propose to perform GS up to the point where it is not effec-
tive, because the version space V' cannot be partitioned well,
and then switch to LS, which does not rely on the features
of items. A pivotal question in this hybridization is “how to
choose the sweet spot where GS should switch to LS”. For
instance, one suitable switching criterion may be when the
number of items in the version space V' is small. Another
suitable criterion may be when the probability mass in V' is
small. In other words, there are many ways to combine the
two methods and it is not obvious which one to apply.

In this work, we propose a new hybrid method that we call
generalized linear search (GLS). GLS switches from GS to
LS when the expected length of interaction to discover the
target item using GS is greater than that of LS. We choose
this switching oracle for several reasons. First, this criterion
naturally captures the fact that GS outperforms LS in mini-
mizing the expected length of interaction. Second, the oracle
can be implemented computationally efficiently. Third, we
can incorporate the oracle in the analysis of GLS and show
that the expected length of interaction decreases. Finally, as
we demonstrate in the experimental evaluation, this approach
performs well in practice.

Algorithm 4 GLS: Generalized linear search.

Input:
Number of item categories K in a question
Number of shown items L

V<« FE

repeat
Choose K — 1 categories q1, . . .
g <~ (U...Ugg_1)
Ask the user to choose one category
The user chooses category k
VeegnV

until (costGS(V, K) > costLS(V, L))

e* «+ LS(V, L)

,qK—1 given V and 7

Output: Target item e*

Algorithm 5 costLS: Expected cost of linear search.

Input:
Items V C FE
Number of shown items L

Letes, ..., ey be an ordering of items V' such that:
m(er) > ... > m(ew))

c+0

foralli=1,...,|V|do
cc+ [i/L] m(e;)

end for

Output: Expected cost ¢

The pseudocode of GLS is in Algorithm 4. Note that GLS
differs from GS in two aspects. First, GS stops when the ex-
pected cost of GS is higher than that of LS. Second, when
GS stops, we switch to LS. The pseudocodes for computing
the expected costs of LS and GS are in Algorithms 5 and 6,
respectively.

GLS can be implemented efficiently. In particular, note that GS
can be represented as a decision tree [12], where each node is
a version space associated with K item categories. Similarly,
GLS can be viewed a pruned version of this tree, where each
leaf node is an instance of LS. The pruned tree is built as fol-
lows. First, we build the tree for GS and recursively compute
the expected cost of GS in each node. Second, we compute
the expected cost of LS in each node and prune the tree at the
nodes where costGS(V, K) > costLS(V, L). The expected
cost of LS in each node can be computed in O (N log N) time,
because it requires sorting at most [V items.

Analysis

Let 7 be the distribution over items F and 7(e) be the prob-
ability that item e is chosen. Let V' C E be a version space
and V be the set of all version spaces where GLS switches
from GS to LS, costGS(V, K) > costLS(V, L). Then Vis a
partitioning of E:

E=UyeyV YWeEVUEV\V:VNU=10



Algorithm 6 costGS: Expected cost of generalized search.

Input:
Items V C F
Number of item categories K in a question

c+1

if (|V] > 1) then
Choose K — 1 categories ¢, . . .
g — (U...Ugkg_1)
forallk=1,..., K do

¢+ c+m(geNV) X costGS(gx NV, K)

end for

end if

,qr—1 given V and 7

Output: Expected cost ¢

because GLS is guaranteed to switch to LS, at the latest when
the cardinality of the version space is one. Let N(e) be the
length of interaction to find item e by GLS and N (V') be
the length of interaction until GLS reaches V. Let m(V) =
> ecy 7(e) be the probability mass of all items in V.

THEOREM 1. The expected cost of GLS is smaller or equal
to the expected cost of GS.
PROOF. Note that the expected cost of GS is defined as

Ecnr[N(e)] = > m(e)N(e). (1)
eckE

For any target item e*, Algorithm 4 switches from GS to LS at
one particular point, where e* € V for some V' € V. Based
on this, the expected cost can be written as:

D

vey

T(VIN(V) + Y m(e)(N(e) = N(V))

ecV

2

The first term is the expected cost of GS before V € V is
reached. The second term is the expected cost of GS after V'
is reached. Equation 2 can be further rewritten as:

> w(V)

vey

)

N+ 3 T - N(V)
ecV

where ) .y, %‘%(N(e) — N(V)) is the expected cost of GS

applied in V. Let N s(V) be the expected cost of LS from V.
By our assumption:

Nis(V) <> —=(N(e) = N(V)) “)

ecV
because costGS(V, K) > costLS(V, L) forall V € V. Fi-
nally, we chain all inequalities and get:
Eeon[N(e)] 2 Y n(V)IN(V) + Nis(V)], - (5)
vev

where the right-hand side is the expected cost of GLS. This
concludes the proof. m

Non-Unit Costs of Interaction

So far we assumed that each type of interaction bears the
same cost. Our work can be easily generalized to the set-
ting where the costs of GS and LS interactions differ. With-
out loss of generality, let the cost of GS interactions be one
and the cost of LS interaction be ««. Note that when o > 1,
LS interactions are more costly than GS interactions, and vice
versa. Then GLS can be straightforwardly adapted to mini-
mize the weighted length of interactions, by replacing ¢ with
ac in costLS (Algorithm 5). Similarly, it is straightforward
to adapt the proof of Theorem 1, by replacing Ny s(V') with
aNLs(V).

OFFLINE EVALUATION

We conduct offline evaluation of the proposed GLS method
using two public recommender systems datasets and compare
it to several baselines and heuristics.

Experimental Setting

We compare GLS to five baselines. The first two baselines
are standalone LS and GS, which were presented in previ-
ous sections. The other three baselines are heuristic combi-
nations of GS and LS, which we call GS-step, GS-num, and
GS-ent. These baselines differ in how they switch from GS to
LS. GS-step switches to LS after A iterations of GS. GS-num
switches to LS when the version space contains less than A
items. GS-ent switches to LS when the entropy of the prob-
ability mass of the items in the version space is smaller than
A. Intuitively, the heuristics address the pivotal question of
when to switch to LS: when the version space has been re-
fined enough times in GS-step, when the version space is
sufficiently small in GS-num, and when the probability mass
is concentrated in just a few items in GS-ent. In all three
cases, A is the external parameter for the heuristic method.

The performance of all methods is measured by the expected
length of interaction. This quantity is computed as follows.
First, we randomly choose a user, proportionally to the num-
ber of items that the user consumed in the dataset. Second,
for a given user, we randomly choose a target item e*, propor-
tionally to the number of times that this item is consumed by
the user. Finally, we compute the length of interaction to find
e*. The length of interaction is averaged over 10° randomly
chosen pairs of user and item. Therefore, all error bars in the
experiments are on the order of 1/4/10 = 1073, and most
differences in the expected lengths of interaction are statis-
tically significant. We experiment with three different num-
bers of item categories that are shown: K = 2, K = 4, and
K = 8. In the all experiments, the number of shown items in
LS is L = 8. We observed similar trends for other values of
L and do not report these due to space constraints.

The proposed methods are evaluated on two datasets: Movie-
Lens' and Lastfm®. The MovieLens dataset contains the rat-
ings of 6K users for 3.9K movies. We preprocess this dataset
as follows. The items E are movies and 7(e) is the probabil-
ity that movie e is watched. This probability is estimated as
the number of times that e is rated with 4 or 5 stars divided by

"MovieLens dataset: http://www.grouplens.org/node/73
?Last.fm dataset: http://www.lastfm.com
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Figure 5. Comparison of GLS to GS and GS-step for MovieLens.
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Figure 6. Comparison of GLS to GS and GS-num for MovieLens.

the total number of 4 and 5 star ratings. The item categories ¢
are the genres of movies. MovieLens contains 18 movie gen-
res, which is insufficient for our purpose. Therefore, we re-
placed the genres of each movie by its Netflix genres. There
are 335 distinct Netflix genres in our dataset. We eliminate
the movies that are described by less than 5 genres. These
are unsuitable for GS-style methods because they are not de-
scribed by a sufficient number of features. We end up with a
dataset of 1.4K movies.

Lastfm is a music dataset of 2K users who listen to 18K
artists. We preprocess this dataset as follows. The items E
are artists and 7 (e) is the probability that artist e is listened
to. This probability is estimated as the number of times that
artist e is listened to divided by the total number of the artist
listening events. The item categories ¢ are the tags assigned
to the artists. We eliminate the artists that are described by
less than 5 tags. Again, these are unsuitable for GS because
they are not described by a sufficient number of features. We
end up with a dataset of 6K artists.
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Figure 7. Comparison of GLS to GS and GS-ent for MovieLens.

Experimental Results

In Figure 5, we compare GLS to GS and heuristic GS-step on
the MovieLens dataset, for three values of K. We observe
two major trends. First, the length of interaction decreases
with K, as larger values of K allow for a fine-grained parti-
tioning of the version space. Second, for all values of K, GLS
significantly outperforms GS. For example, for K = 2, the
expected length of GLS interaction is 5.93, 40% shorter than
that of GS, 9.85. For K = 4 and K = 8, the expected length
of GLS interaction is, respectively, 36% and 34% shorter than
that of GS. Third, GLS always performs better than or on
par with GS-step. Fourth, we observe that the performance
of GS-step depends on the parameter A. For instance, for
K = 2, GS-step(6) performs the best, while GS-step(3) is
already worse than GS. We observe the same trend for other
values of K. For instance, GS-step(3) performs comparably
to GLS for K = &, but worse than GS for X = 2.

In Figure 6, we compare GLS to GS and GS-num on the Movie-
Lens dataset. We observe the same trends as in Figure 5. First,
the length of interaction is inversely correlated with K. Sec-
ond, GLS always outperforms GS. Third, GLS always outper-
forms or is on par with GS-step. Fourth, the performance of
GS-num depends on the value of A: for K = 2, the shortest
GS-num interaction is obtained for A = 130; while for K = 4
and K = 8, it is obtained for A = 70 and A = 50, respec-
tively. Also note that for all values of K, at the optimal op-
erating point GS-num performs on par with GLS, whereas for
GS-step this was observed only for K = 8. This is attributed
to the fact that the number of items in the version space is a
finer indicator of the suboptimal performance of GS than the
number of GS steps.

In Figure 7, GLS is compared to GS and heuristic GS-ent on
the MovieLens dataset, for the same three values of K. We
observe the same trends that were observed in Figures 5 and
6, although in this case the performance of GS-ent does not
vary with K as widely as previously.

We conduct the same experiments on the Lastfin dataset, and
our results are reported in Figures 8, 9, and 10. Our findings
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Figure 8. Comparison of GLS to GS and GS-step for Lastfin.
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Figure 9. Comparison of GLS to GS and GS-nun for Lastfm.

resemble those in the MovieLens dataset. The expected length
of GLS interaction is always shorter than that of GS, and GLS is
either superior or comparable to the three heuristic methods,
whose performance depends on their parameter A. Also note
that the optimal operating points of the heuristics are obtained
for different values of A. For example, on the MovieLens
dataset, GS-step performs the best for A = 3, A = 4, and
A = 6; when K = 2, K = 4, and K = 8, respectively. On
the other hand, on the Lastfin dataset, GS-step performs the
best for A = 4, A = 5, and A = & for the same values of
K. Similar differences across the datasets are observed also
for the GS-num and GS-ent heuristics.

We conclude that GLS performs better than its individual com-
ponents, GS and LS. This superiority is statistically significant
and holds for the MovieLens and Lastfim datasets under evalu-
ation, and for various values of K. A more intricate question
deals with the comparison of GLS to the heuristic methods.
We conclude that GLS steadily outperforms GS-step, and per-
forms comparably with GS-num and GS-ent, but only when
these two are parameterized optimally. However, the optimal
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Figure 10. Comparison of GLS to GS and GS-ent for Lastfm.

operating points A of the heuristics depend on the applied
heuristics, the dataset in hand, and the number of categories
K. In practice, a suitable value of A has to be chosen a priori
and this is not trivial. On the other hand, GLS is parameter
free and never performs worse than GS-step, GS-num, and
GS-ent. Hence, GLS should be preferred not only to GS and
LS, but also to the three evaluated heuristic methods.

LIVE USER STUDY

We conduct a user study of GLS on Amazon’s Mechanical
Turk?, a public crowd-sourcing service. For the sake of sim-
plicity, we only compare the binary variants of GLS and GS,
with K = 2 and L = 10. The study is intra-group: each sub-
ject experiences both searches and is asked to compare them.

Experimental Setting

We experiment with 253 subjects. Each subject interacts with
GLS and GS in a random order, and is asked to compare the
searches. The recommended items F are 200 most rated
movies from the MovieLens dataset.

The experiment is organized as follows. At the beginning
of the experiment, we randomly select 10 movies from F,
present them to the subject, and ask the subject to choose
a target movie that the subject is familiar with (top of Fig-
ure 11). Upon selecting the target movie, the subject interacts
with the first search. This search is chosen at random to elim-
inate position bias. In the GLS search, the subject is asked to
answer binary GS questions (middle of Figure 11) until GLS
switches to LS. When this happens, the subject is shown a list
of recommended movies, requested to examine it, and asked
if the target item is in the list (bottom of Figure 11). Likewise,
in the GS search, the subject answers binary GS questions un-
til the search space is sufficiently small, and then is shown a
list of movies and asked whether the target movie is in the
list. Upon completing both searches, the subject is asked to
answer four questions that compare the searches (Table 1).

3http ://mturk.com



Choose one movie from the list below that you known:

The Shawshank Redemption
The Dark Knight Rises
Saving Private Ryan

Kill Bill: Vol. 1
Transformers

Blade Runner

Star Trek

Monsters, Inc.

Skyfall

Citizen Kane

System 1:

Find the movie that you selected earlier by answering questions. Answer the questions until we
recommend a list of movies.

Is the movie drama?
L No | ves

Recommended movies:

Does the movie that you selected earlier appear in the above list? Please check the list. The list
can be scrolled.

No

Yes

Figure 11. A portion of the user study.

For each search, we compute four metrics. The first is the hit
rate, i.e., the fraction of searches in which the target movie
appears in the final list, which communicates how good the
search is in finding the target movie. The second metric is
the number of questions that the subject was asked during the
search. The third metric is the duration of interaction, i.e.,
the time (in seconds) between answering the first question
and examining the final list. The fourth metric is the length of
the final list of recommended movies.

Experimental Results

In Table 2, we report the values of the four metrics for each
search as well as the distribution of the answers to the com-
parison questions from Table 1. We observe several trends.
First and foremost, GLS is preferred over GS by more subjects,
61.3% vs 38.7%. What are the reasons for this preference?

Table 2 clearly shows that GLS requires significantly less in-
teraction than GS, as reflected by both the number of asked
questions and the duration of the search. This is noted by the
subjects. Specifically, 46.7% of the subjects prefer GLS be-
cause it asks less questions (C1). Most of these subjects also
find GLS easier to use (C3) and prefer it overall (C4).

Also, Table 2 shows that GLS produces much longer lists of
movies than GS. Although the examination of these lists does
not overload the subjects, as indicated by the duration of the
search, 38.3% of the subjects prefer shorter lists that are pro-
duced by GS (C2), and most of these subjects also prefer GS
overall. Nevertheless, the benefits of C1 and C3 outweigh the
shortcomings of C2, as more subjects prefer GLS over GS.

We also observe that a large portion of the subjects has
no clear preference towards the three criteria: 39.5% (C1),
43.9% (C2), and 55.7% (C3). This is not surprising, since
both searches are similar and differ only in the last few steps,

Which system do you prefer with respect to the following:

(C1) Number of asked questions

e No preference

o [ prefer System 1 because it asks less questions
o [ prefer System 2 because it asks less questions

(C2) Length of the final list

e No preference

o [ prefer System 1 because it produces a shorter list
o [ prefer System 2 because it produces a shorter list

(C3) Ease of use
e No preference
o [ prefer System 1 because it is easier to use
o [ prefer System 2 because it is easier to use

(C4) Overall
o [ prefer System 1 to System 2
e [ prefer System 2 to System 1

Table 1. Search comparison questions.

GS GLS  Neither

Hit rate 0.32 0.53

Number of questions 6.12 2.30

Search duration 9.69 3.52

Length of the final list 374 2941

(C1) Number of questions  13.8% 46.7% 39.5%
(C2) Length of the final list 38.3% 17.8% 43.9%
(C3) Ease of use 13.8% 30.5% 55.7%
(C4) Overall preference 38 7% 61.3%

Table 2. Summary of the user study results.

when GLS terminates before GS and produces a longer list of
movies. Finally, note that GLS achieves a substantially higher
hit rate than GS. This is due to the fact that GLS asks less ques-
tions than GS and is less likely to eliminate the target movie
due the incorrect answer of a subject to a question.

RELATED WORK

Recommendations produced by a recommender system are
typically shown as a ranked list of items. The ranking of items
in the list communicates their fit to the target user, such as the
top-ranked items are supposedly the best recommendations
[17]. Limiting the size of the list reduces the choice difficulty
and helps the user to cope with information overloading [6].

Several issues around recommendation interfaces have been
investigated in early recommendation works. Cosley et al. [9]
studied how the display and the scale of item predictions af-
fect the ratings provided by users. It was found that users
were influenced by the displayed predictions, while the scale
had no apparent effect. Ziegler et al. [28] argued that the rec-
ommendation list should incorporate a degree of diversity, to
reflect the breadth of user interests [1, 2]. It was shown that,
despite decreasing the accuracy of the recommendations, di-
versification increased the overall user satisfaction.



Often, the recommendation list can be grouped or catego-
rized, to simplify user navigation and item exploration. Hu
and Pu [15] evaluated the “organizational” recommendation
interface that allowed users to group and filter items accord-
ing to a set of domain features. A comparison between the
organizational and list interfaces indicated that the former im-
proved the perceived usefulness and diversity of the recom-
mendations, increased user confidence, and was found to be
more intuitive than the latter.

In addition to the LS and GS approaches that were elaborately
discussed earlier, another related search is faceted search
[14]. This is a search, where the user first chooses a facet,
a group of semantically related attributes, and then a desired
attribute in that facet. In our work, we have only one group
of semantic attributes, either movie or music genres. That is,
our approach can be viewed as a degenerate case of faceted
search with only one group, and we do not perform experi-
mental comparison work to faceted search.

The importance of an easy-to-use interface is paramount in
critique-based recommendations [8]. Chen and Pu developed
an interface that grouped items, compared the groups to the
recommended items, and suggested critiques reflecting these
comparisons [7]. The accuracy of the critiques and the usabil-
ity of the interface were evaluated in a user study. The results
showed that users preferred the suggested critiques and pro-
vided them more frequently, which reduced the duration of
interactions and increased the perceived user confidence.

Another functionality availed by the recommender’s interface
is explanation and persuasion [4]. These are used to jus-
tify the recommendations, cultivate user trust, and convince
users to follow the recommendations. Tintarev and Masthoff
[22] developed several interfaces complementing the recom-
mended items with explanations. Their evaluation confirmed
that explanations boost user satisfaction, whereas the highest
satisfaction was achieved when the explanations referred to
item features that were important for users.

Although much research has been devoted to exploration in-
terfaces in the general HCI context [3], this has received rel-
atively little attention in recommender systems [21, 23]. In
a recent work, Verbert et al. [24] developed TalkExplorer,
an interactive academic conference visualization tool, build-
ing upon graph-based information exploration libraries, like
PeerChoser [19] and SmallWorlds [13]. TalkExplorer al-
lowed users to explore various relevance perspectives, e.g.,
tags assigned to recommended papers, users who book-
marked these papers, and other papers tagged by these users.
The evaluation indicated that TalkExplorer was perceived
more insightful that the standard list of recommended items.

The above interface components and visualization tools sup-
ply various information complementing the recommenda-
tions. However, none of them looks into optimizing user
experience in recommender systems [16]. This issue is ad-
dressed by general user interaction design guidelines, and we
observe successful practical solutions in industrial products,
such as movie recommendation interface by Netflix* or con-

“Netflix recommendations: Beyond the 5 stars, http://techblog. net-
flix. com/2012/04/netflixrecommendations-beyond-5-stars.html

tact recommendations by LinkedIn®. However, to the best of
our knowledge, no evidence-based research that articulates
the development of these interfaces, in particular, consider-
ing the recommendation scenarios, has been published.

CONCLUSIONS

The claim that a usable interface may improve user’s subjec-
tive perception of a recommender is well established [20]. In
spite of this, recommender systems research has mainly fo-
cused on algorithmic techniques for rating predictions, rather
than on interface and user interaction matters.

In this work, we devised the GLS method that minimizes the
length of user interaction with the recommender, to find a
target item in a recommendation list. GLS combines two es-
tablished search methods, GS and LS, and successfully lever-
ages their advantages. We investigated the switching criterion
from GS to LS and concluded that GS should be applied as
long as its expected cost is lower than that of LS, and should
be abandoned afterwards. We prove that GLS performs at least
as well as GS.

We demonstrate in an offline and live evaluation that the pro-
posed GLS method is superior not only to its individual com-
ponents, GS and LS, but also to several heuristic methods.
Having said that, GLS does not require any parameter tun-
ing and can be deployed in a practical recommender system.
We also conduct a user study that demonstrates steady user
preference towards GLS over the baseline GS method.

Future questions for investigation refer to a thorough user
evaluation of GLS. While it was found to lead to the short-
est interactions and was preferred by users, it combines item
categories with individual items in the same search process.
Hence, it is critical to ascertain whether users find the GLS in-
teractions intuitive and enjoyable [16]. Also, it is not obvious
how GLS, and specifically the item categories in the GS stages,
should be visualized [27]. On one hand, textual titles may not
be as appealing as pictorial thumbnails. On the other hand,
showing the thumbnails may not properly communicate the
very notion of categories.

Apart from this, it is important to address the cost of answer-
ing questions. In our user study, we show that GLS recom-
mends a much longer list of items than GS. This may put a sig-
nificant burden on users [6], which may be comparable with
answering a few GS questions, and practically factor out the
advantages of GLS. Therefore, it is important to thoroughly
study the cost, both in terms of time and cognitive effort, of
answering different types of questions.

Finally, another aspect that asks for further research is the in-
tegration of GLS with a variety of interface and user-related
topics, such as decision support, provision of critiques, con-
tent discovery, and explanation of recommendations [11]. It
is, therefore, necessary to conduct user studies and evaluate
the compound effect of GLS in these use cases.

Navigating LinkedIn’s New User Interface,
http://randomactsofleadership.com/navigating-linkedins-new-
user-interface/
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