
Structured Kernel-Based Reinforcement Learning

Branislav Kveton
Technicolor Labs

Palo Alto, CA
branislav.kveton@technicolor.com

Georgios Theocharous
Adobe

San Jose, CA
theochar@adobe.com

Abstract

Kernel-based reinforcement learning (KBRL) is a popular ap-
proach to learning non-parametric value function approxima-
tions. In this paper, we present structured KBRL, a paradigm
for kernel-based RL that allows for modeling independencies
in the transition and reward models of problems. Real-world
problems often exhibit this structure and can be solved more
efficiently when it is modeled. We make three contributions.
First, we motivate our work, define a structured backup oper-
ator, and prove that it is a contraction. Second, we show how
to evaluate our operator efficiently. Our analysis reveals that
the fixed point of the operator is the optimal value function in
a special factored MDP. Finally, we evaluate our method on a
synthetic problem and compare it to two KBRL baselines. In
most experiments, we learn better policies than the baselines
from an order of magnitude less training data.

Introduction
Markov decision processes (MDPs) (Puterman 1994) are an
established framework for sequential decision making under
uncertainty. If a decision problem is Markovian, has a small
number of states, and its model is known, it can be typically
easily solved as an MDP. In practice, however, problems are
large and their models are often unavailable. Such problems
are typically hard to solve and have been studied in the field
of reinforcement learning (RL) (Sutton and Barto 1998) for
the past 30 years.

A popular approach to non-parametric RL is kernel-based
RL (KBRL) (Ormoneit and Sen 2002). In kernel-based RL,
the Bellman operator is approximated by a backup operator
on a sample of the problem. The fixed point of this operator
can be found by value iteration. Each step of value iteration
takes θ(n2) time, where n is the sample size. Hence, KBRL
is not practical when the sample is large. Recently, Barreto
et al. (2011), and Kveton and Theocharous (2012), proposed
quantization of the KBRL operator on representative states.
The time complexity of both methods is O(n) and they per-
form well when the intrinsic dimension of the state space is
small.

The state space of large real-world problems rarely lies on
a low-dimensional manifold and structural assumptions may
be necessary to solve such problems. In this paper, we show
how to incorporate one specific assumption, independencies
in the transition and reward models of solved problems, into
KBRL. We make three contributions. First, we motivate our

Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

problem, introduce a structured KBRL backup operator, and
prove that it is a contraction. Second, we show how to apply
our backup operator computationally efficiently. Our analy-
sis reveals that structured KBRL is equivalent to computing
the optimal value function in a special factored MDP. To the
best of our knowledge, this is the first such result in the con-
text of KBRL and structured problems. Finally, we evaluate
our approach on a synthetic problem and compare it to two
KBRL baselines. Typically, we learn better policies than the
baselines from an order of magnitude less training data.

In the rest of this paper, we assume that the state space is
discrete, finite, and metric. The distance function is d(·, ·).

Background
Markov decision processes (MDPs) are a popular model for
discrete-time stochastic control problems (Puterman 1994).
Formally, an MDP is a tupleM=(S,A, P,R), where S is a
set of states, A is a set of actions, P (s′ | s, a) is a transition
model that describes the dynamics of the MDP, and R(s, a)
is a reward model that assigns rewards to state-action pairs.
An MDP policy is a mapping π : S → A. The quality of the
policy is usually measured by the infinite horizon discounted
reward E[

∑∞
t=0 γ

trt], where γ ∈ (0, 1) is a discount factor
and rt is the immediate reward at time t. The optimal policy
π∗ can be computed from the optimal value function, which
is the fixed point of the Bellman equation (Bellman 1957):

V ∗(s) = max
a

[
R(s, a) + γ

∑
s′

P (s′ | s, a)V ∗(s′)

]
. (1)

The function V ∗ can be computed by value iteration, policy
iteration, and linear programming (Puterman 1994).

Real-world problems often involve structure and therefore
can be represented compactly. In this paper, we focus on the
compact representation known as factored MDPs (Boutilier,
Dearden, and Goldszmidt 1995). Formally, a factored MDP
is a 4-tupleM = (X,A, P,R), where X = X1×· · ·×XK

is a state space factored into K state variables and A is a set
of actions. For simplicity, we assume that all state variables
Xk are binary. The transition model is factored as:

P (x′ | x, a) =

K∏
k=1

P (x′[k] | x[pak], a), (2)

where x′[k] ∈ {0, 1} is the new state of the variable Xk, the
parent set pak are the indices of the variables that affect this
state, and x[pak] ∈ {0, 1}|pak| is the state of these variables.

The parent set is typically small. We assume that the reward
function is factored on the parent sets pak as:

R(x, a) =

K∑
k=1

Rk(x[pak], a). (3)

Similarly to MDPs, the optimal policy π∗ in factored MDPs
can be computed from the optimal value function V ∗, which
is the fixed point of the Bellman equation:

V ∗(x) = max
a

[
R(x, a) + γ

∑
x′

P (x′ | x, a)V ∗(x′)

]
. (4)

In general, it is necessary to make structural assumptions on
V ∗ to find it efficiently (Koller and Parr 1999; Guestrin et al.
2003; Kveton, Hauskrecht, and Guestrin 2006).

When the model is not available, the problem of learning
the optimal policy is known as reinforcement learning (RL).
Sutton and Barto (1998) provide a comprehensive overview
of existing RL algorithms. All of these methods learn from
a sample of interactions with the environment. In this work,
the sample is a set of n 4-tuples {(xt, at, rt,x′t)}

n
t=1, where

xt ∈ {0, 1}K , at, rt ∈ RK , and x′t ∈ {0, 1}
K are the state,

action, reward, and next state at time t, respectively. At time
t, the next state of the variable Xk is x′t[k] ∈ {0, 1} and the
state of the corresponding parent set is xt[pak]∈{0, 1}|pak|.
The reward of the k-th reward function (Equation 3) at time
t is rt[k]. When the reward model is not factored, we write
rt instead of rt.

Related work
Kernel-based RL (KBRL) (Ormoneit and Sen 2002) is a pop-
ular RL approach. In kernel-based RL, the Bellman operator
is approximated by an operator on a sample:

TλV (x) = max
a

∑
t

λa(xt,x) [rt + γV (x′t)] . (5)

The kernel λa(xt,x) is a function that measures the similar-
ity of the states x and xt. This function must be normalized
such that

∑
t λ

a(xt,x) = 1 and be zero in all examples that
are inconsistent with the action a, at 6= a.

KBRL has many favorable properties (Ormoneit and Sen
2002). First, the operator Tλ (Equation 5) has a unique fixed
point. Second, the fixed point converges to the optimal value
function V ∗ for the Gaussian kernel:

λa(xt,x) ∝ exp

[
−d

2(xt,x)

2σ2

]
1{at = a} (6)

when n→∞ and σ → 0. Finally, note that the operator Tλ
(Equation 5) depends on the value function V in n states x′t.
Therefore, the backup of V by Tλ can be computed in θ(n2)
time because V needs to be updated in only n states and the
cost of each update is θ(n).

The time complexity of kernel-based RL is Ω(n2). There-
fore, KBRL is not practical when the sample size n is large.
This scalability issue has been addressed by several authors.
Jong and Stone (2006) showed how to get a more informa-
tive sample of the problem using prioritized sweeping. Fit-
ted Q iteration (FQI) (Ernst, Geurts, and Wehenkel 2005) is

the first practical and general KBRL algorithm. The method
is a variant of Q iteration, in which the Q function is approx-
imated by a non-parametric regressor. The quality and com-
putation time of FQI solutions depend on the chosen regres-
sor. Recently, Kveton and Theocharous (2012), and Barreto
et al. (2011), proposed quantization of the operator Tλ on k
representative states. Both of these approaches perform well
when the intrinsic dimension of the state space is small.

Structured KBRL can be viewed as aggregating synthetic
examples based on structural assumptions on observed data.
The idea of synthesizing a larger sample is similar to Fonte-
neau et al. (2013). The difference in our work is that we do
not explicitly create new trajectories. Instead, we aggregate
all of them, exponentially many in K, in a computationally
efficient manner.

Structured kernel-based RL
Before we proceed to structured KBRL, we motivate it by a
simple illustrative example. Our example is a Markov chain
with two binary state variables, X1 and X2:

P (x′ | x, a) = 1{x[1] 6= x′[1]}1{x[2] 6= x′[2]}
R(x, a) = 9x[1] + x[2].

(7)

The states of these variables alternate between 0 and 1, and
change independently of each other. The reward function is
additive; and the rewards for X1 = 1 and X2 = 1 are 9 and
1, respectively.

Our problem is a deterministic Markov chain. Therefore,
the value of a state can be computed as a sum of discounted
rewards in a single trajectory that starts in that state:

V ∗((0, 0)) =
10γ

1− γ2
, V ∗((0, 1)) =

1 + 9γ

1− γ2
,

V ∗((1, 0)) =
9 + γ

1− γ2
, V ∗((1, 1)) =

10

1− γ2
.

(8)

Suppose that we observe a sample {(xt, at, rt,x′t)}
2
t=1:

(x1, a1, r1,x
′
1) = ((0, 1), a, (0, 1), (1, 0))

(x2, a2, r2,x
′
2) = ((1, 0), a, (9, 0), (0, 1))

(9)

and use KBRL to estimate V ∗. Let V ∗λ be the fixed point of
Equation 5 and the similarity of the states be measured by a
nearest-neighbor kernel:

λa(xt,x) ∝ 1
{
d(xt,x) = min

i
d(xi,x)

}
. (10)

Then the value function V ∗λ is equal to V ∗ in both observed
states, (0, 1) and (1, 0), but the unobserved states, (0, 0) and
(1, 1), are mispredicted as:

1

2
V ∗λ ((0, 1)) +

1

2
V ∗λ ((1, 0)) =

5 + 5γ

1− γ2
. (11)

A better estimator could be learned from more training data.
Suppose that we cannot get a larger sample but we know the
structure of the problem. Then we could synthetize a larger
sample based on independence assumptions in its model. In
our problem (Equation 7), the state variables X1 and X2 are
independent, and so are their rewards. As a result, we could

Structured KBRL operator Unstructured KBRL operator

Figure 1: An illustration of unstructured (Equation 5) and structured (Equation 13) KBRL operators on our motivating example
(Equation 7). The red and blue colors mark estimates corresponding to the first and second examples (Equation 9), respectively.
The dotted and solid arrows mark stochastic and deterministic transitions, respectively. The kernel λ determines the probability
of the stochastic transitions.

exchange the state and reward factors in the existing sample,
and generate two new examples:

(x3, a3, r3,x
′
3) = ((0, 0), a, (0, 0), (1, 1))

(x4, a4, r4,x
′
4) = ((1, 1), a, (9, 1), (0, 0)).

(12)

The KBRL solution on the new sample {(xt, at, rt,x′t)}
4
t=1

is the optimal value function V ∗.
Our example illustrates how variable independence helps

in learning better value functions. In the rest of this section,
we generalize our ideas to multiple state variables and more
elaborate models.

Structured backup operator
Our solution is motivated by the following observation. The
KBRL backup operator (Equation 5) can be viewed as being
generated by a stochastic process. Given a state x and action
a, a new state xt is chosen proportionally to its similarity to
x, yields the reward of rt, and then transitions into the next
state x′t (Jong and Stone 2006). Suppose that the next state
of each state variable Xk depends only on its parent set pak.
Then the following stochastic process would be appropriate
for modeling this structure. For each variable Xk, a substate
xtk [pak] is generated based on its similarity to x[pak], inde-
pendently of all other substates; yields the reward of rtk [k];
and then transitions into the next state x′tk [k].

We refer to the corresponding backup operator as a struc-
tured backup operator:

T̄λV (x) = max
a

∑
t1,...,tK

(
K∏
k=1

λak(xtk ,x)

)
(13)

[
K∑
k=1

rtk [k] + γV (τ(t1, . . . , tK))

]
.

The sum
∑

t1,...,tK

is over K indices tk, where tk is the index of

the example corresponding to the k-th state variableXk. All

indices tk take values from 1 to n. The structured kernel:

K∏
k=1

λak(xtk ,x) (14)

is a product of K kernel factors λak(xtk ,x). We assume that
each kernel factor is a Gaussian kernel:

λak(xt,x) ∝ exp

[
−d

2(xt[pak],x[pak])

2σ2

]
1{at = a} (15)

that is normalized such that
∑
t λ

a
k(xt,x) = 1 for all states

x and actions a. Note that in general, the kernel can be any
function that measures the similarity of the substates x[pak]
and xt[pak]. This function must be properly normalized and
be zero in all examples that are inconsistent with the action
a, at 6= a.

The next state τ(t1, . . . , tK) ∈ {0, 1}K is a vector whose
k-th entry is the next state of the variable Xk at time tk:

τ(t1, . . . , tK)[k] = x′tk [k] ∀k ∈ {1, . . . ,K} . (16)

The structured reward:
K∑
k=1

rtk [k] (17)

is a sum of K reward factors rtk [k]. The k-th reward factor
is the reward on the parent set of the variable Xk at time tk.
Our approach is illustrated on a simple example in Figure 1.

In the next section, we analyze the structured backup op-
erator T̄λ. In particular, we show that it is a contraction and
identify its fixed point. Moreover, we show how to compute
the backup T̄λV (x) efficiently. Naively, it can be computed
by summing all θ(nK) terms in Equation 13. This is clearly
infeasible even for relatively small n and K.

Theoretical analysis
First, we show that the operator T̄λ is a contraction mapping.
Therefore, it has a unique fixed point.

Proposition 1. The operator T̄λ is a contraction mapping.
Proof: Let V and U be value functions on the state space X.
Then:∥∥T̄λV − T̄λU∥∥∞
≤ γmax

x,a

∑
t1,...,tK

(
K∏
k=1

λak(xtk ,x)

)
|V (τ(t1, . . . , tK))− U(τ(t1, . . . , tK))|

≤ γ ‖V − U‖∞ . (18)

The first inequality follows from the definition of the opera-
tor T̄λ (Equation 13), an upper bound:∣∣∣max

a
f(a)−max

a
g(a)

∣∣∣ ≤ max
a
|f(a)− g(a)| (19)

that holds for any two f and g, and the fact that each kernel
factor λak(xtk ,x) is non-negative for all inputs. The second

inequality is due to
∑

t1,...,tK

(
K∏
k=1

λak(xtk ,x)

)
= 1 for all x

and a. This concludes our proof.
Second, we show how to rewrite the operator T̄λ compactly.
As a result, the backup T̄λV (x) can be computed more effi-
ciently than by summing over θ(nK) terms.
Proposition 2. The operator T̄λ can be rewritten as:

T̄λV (x) = maxa

[
r̂(x, a) + γ

∑
y p̂(y | x, a)V (y)

]
,

where y is a state from the set of perturbed next states Y ⊆
X.1 The reward estimator r̂(x, a) is factored as:

r̂(x, a) =
∑K
k=1 r̂k(x, a), (20)

where r̂k(x, a) is estimated on a subspace X[pak] as:

r̂k(x, a) =
∑
t λ

a
k(xt,x)rt[k]. (21)

The transition estimator p̂(y | x, a) is factored as:

p̂(y | x, a) =
∏K
k=1 p̂k(y[k] | x, a), (22)

where p̂k(y[k] | x, a) is estimated on a subspace X[pak] as:

p̂k(y | x, a) =
∑
t λ

a
k(xt,x)1{x′t[k] = y} . (23)

Proof: The product of the first reward factor rt1 [1] with the
kernel can be written as:∑

t1,...,tK

(
K∏
k=1

λak(xtk ,x)

)
rt1 [1]

=
∑

t1,...,tK

(
K∏
k=2

λak(xtk ,x)

)
(λa1(xt1 ,x)rt1 [1])

=

(
K∏
k=2

∑
tk

λak(xtk ,x)

)
︸ ︷︷ ︸

1

(∑
t1

λa1(xt1 ,x)rt1 [1]

)

=
∑
t1

λa1(xt1 ,x)rt1 [1]. (24)

1We explicitly distinguish between X and Y because the set Y
can be much smaller, depending on the sample and kernel.

The sum of products can be replaced by the product of sums
because each term λak(xtk ,x) and λa1(xt1 ,x)rt1 [1] depends
only on one summation index. Similarly to Equation 24, the
product of all reward factors rtk [k] with the kernel is:∑

t1,...,tK

(
K∏
k=1

λak(xtk ,x)

)[
K∑
k=1

rtk [k]

]

=

K∑
k=1

∑
tk

λak(xtk ,x)rtk [k]︸ ︷︷ ︸
r̂k(x,a)

= r̂(x, a). (25)
The product of the value function V with the kernel is:∑
t1,...,tK

(
K∏
k=1

λak(xtk ,x)

)
γV (τ(t1, . . . , tK))

= γ
∑
y

V (y)

∑
t1,...,tK

(
K∏
k=1

λak(xtk ,x)

)
1{τ(t1, . . . , tK) = y}

= γ
∑
y

V (y)
∑

t1,...,tK

K∏
k=1

λak(xtk ,x)1
{
x′tk [k] = y[k]

}
= γ

∑
y

V (y)

K∏
k=1

∑
tk

λak(xtk ,x)1
{
x′tk [k] = y[k]

}
︸ ︷︷ ︸

p̂k(y[k]|x,a)

= γ
∑
y

p̂(y | x, a)V (y). (26)

In the first equality, we introduce a variable y, which allows
us to count all possible next states τ(t1, . . . , tK) efficiently.
The sum of products can be replaced by the product of sums
because all terms λak(xtk ,x)1

{
x′tk [k] = y[k]

}
depend only

on one summation index tk.
Our main claim follows directly from substituting Equa-

tions 25 and 26 into Equation 13.
Proposition 2 suggests the following procedure for comput-
ing the backup T̄λV (x). First, compute the local estimators
p̂k(y | x, a) and r̂k(x, a), for all k, y, substates x[pak], and
actions a. Let the number of states in each subspace X[pak]
be O(1). Then these estimators can be computed in O(Kn)
time. Second, compute the global estimators p̂(y | x, a) and
r̂(x, a) by aggregating the local ones, for all y and a. Since
y ∈ X, the global estimators can be computed in O(K |X|)
time. So overall, the time complexity of computing T̄λV (x)
is O(K(|X|+ n)). Note that |X| = O(2K). Therefore, our
new method is about nK/2K ≈ (n/2)K more efficient than
summing over all terms in Equation 13, exponentially faster
in K for all n > 2.

Proposition 2 also points out a novel connection between
model-based and kernel-based RL. In particular, it says that
the fixed point of the KBRL operator T̄λ (Equation 13) cor-
responds to the optimal value function in a factored Markov

Algorithm 1 structKBRL: Structured kernel-based RL.

Input:
Sample {(xt, at, rt,x′t)}

n
t=1

Approximation error ε

Estimate r̂(x, a) and p̂(y | x, a) (Equations 20 and 22)
Initialize the value function V (0)

i← 0
repeat

for all x ∈ X do
V (i+1)(x)← T̄λV (i)(x) (Proposition 2)

end for
i← i+ 1

until
∥∥V (i) − V (i−1)

∥∥
∞ < ε

Output:
Value function V (i)

decision processMλ = (X,A, p̂, r̂). This is the first result
of this kind for structured problems. Jong and Stone (2006)
pointed out a similar connection in unstructured problems.

In reinforcement learning, the model of the problem is not
available and model-based RL is often criticized for building
it (Sutton and Barto 1998). Indeed, many RL algorithms can
learn the optimal value function without building the model.
Proposition 2 clearly says that learning of the optimal value
function in a factored MDP, whose parameters are estimated
using kernels, is equivalent to backups on the sample, where
the model is not explicitly present. So in this setting, model-
based and model-free RL are equivalent.

Algorithm
Based on Proposition 2, we propose the following algorithm.
First, we collect a sample {(xt, at, rt,x′t)}

n
t=1. Second, we

precompute the terms r̂(x, a) and p̂(y | x, a) (Equations 20
and 22), for all x, y, and a. Finally, we iteratively apply the
backup operator T̄λ until consecutive backups differ by less
than ε. Our approach is outlined in Algorithm 1. We refer to
it as Algorithm structKBRL.

The sample can be generated in O(n) time. The statistics
r̂(x, a) and p̂(y | x, a) can be precomputed in O(K(|X|2 +
n)) time, as discussed below Proposition 2. Finally, each T̄λ
backup takes O(|X|2) time. Therefore, the time complexity
of Algorithm structKBRL is O(K(|X|2 +n)), linear in the
sample size n and quadratic in the number of states |X|.

Experiments
We perform two experiments. First, we compare Algorithm
structKBRL to two KBRL baselines. Second, we study the
sensitivity of our algorithm to the correctness of the model.

Network administration problem
All our experiments are performed on the network adminis-
tration problem (Guestrin, Koller, and Parr 2001). The prob-
lem comprises a network of computers that crash randomly.
When a computer crashes, the probability that its neighbors

in the network crash increases. The network is controlled by
a network administrator who can reboot crashed computers.
This prevents spreading of their failures to other computers.

We study the ring network topology with K computers.2
The state of each computer is modeled by a binary variable,
where Xk= 0 and Xk= 1 mean that the k-th computer has
crashed and works properly, respectively. The administrator
can take K actions. The k-th action is rebooting of the k-th
computer. The state of the variable Xk evolves according to
the following model:

P (X ′k = 0 | a = k) = 0

P (X ′k = 0 | Xk = 0, a 6= k) = 0.95

P (X ′k = 0 | Xk = 1, Xk	1 = 0, a 6= k) = 0.33

P (X ′k = 0 | Xk = 1, Xk	1 = 1, a 6= k) = 1/K,

(27)

where k	 δ = ((k− δ− 1) mod K) + 1 and the parent set
is pak = {k, k 	 1}. The reward function is factored as:

R(x, a) = 3x[1] +
∑K
k=2 x[k]. (28)

The discount factor γ is 0.9. Each problem is solved for 100
steps and its starting state is chosen at random. The number
of training episodes is varied from one to one thousand. All
policies are evaluated on 300 test episodes and their quality
is measured by the expected cumulative discounted reward.
All results are averaged over 20 randomly initialized runs.

State-of-the-art solutions
In the first experiment, we compare Algorithm structKBRL
to two state-of-the-art KBRL baselines, FQI (Ernst, Geurts,
and Wehenkel 2005) and kernel-based RL on representative
states (Kveton and Theocharous 2012), which we refer to as
repKBRL. We vary the number of training episodes from one
to one thousand and observe how many episodes are needed
to learn good policies. In FQI, we use 50 totally randomized
trees and the minimum number of examples in the leaves of
these trees is set to 16. The representative states in repKBRL
are all 2K possible network states. The heat parameter is set
as σ = 1/3. Our results are shown in Figure 2. We observe
two major trends.

First, Algorithm structKBRL learns nearly optimal poli-
cies as the number of training episodes increases. The qual-
ity of the policies improves as the sample size increases. In
all problems, we learn 95% optimal policies from 10 or less
training episodes.

Second, Algorithm structKBRL is more computationally
and sample efficient than FQI and repKBRL. In most cases,
we learn better solutions than the baselines from an order of
magnitude smaller sample. The reason is that we model the
structure of the problem. Algorithm structKBRL is usually
significantly faster than repKBRL. Both methods are sample
averagers and their computation times increase linearly with
the sample size. However, each method averages the sample
a different number of times, θ(K) and θ(2K), and this is the
reason for the observed speedup.

2We also experimented with other network topologies, such as
the ring-of-rings and star. The trends on these problems are similar
to those reported in this paper.

1 10 100 1k
35

40

45

50

55
R

e
w

a
rd

6−ring network

1 10 100 1k
0

2.5

5

7.5

10

Number of training episodes

C
o

m
p

u
ta

ti
o

n
 t

im
e

 [
s
]

6−ring network

1 10 100 1k
45

50

55

60

65
8−ring network

1 10 100 1k
0

5

10

15

20

Number of training episodes

8−ring network

1 10 100 1k
55

60

65

70

75
10−ring network

1 10 100 1k
0

10

20

30

40

Number of training episodes

10−ring network

Optimal policy

FQI

repKBRL

structKBRL

Figure 2: Comparison of three KBRL methods on three K-ring network administration problems. For each solution, we report
the cumulative discounted reward and computation time.

1 10 100 1k
49

50

51

52

53

54

Number of training episodes

R
e

w
a

rd

6−ring network

1 10 100 1k
54

56

58

60

62

64

Number of training episodes

8−ring network

1 10 100 1k
64

66

68

70

72

74

Number of training episodes

10−ring network

Optimal policy

Simpler

Precise

More complex

Figure 3: Comparison of three variants of Algorithm structKBRL; when the model of the world is accurate, simpler, and more
complex; on three K-ring network administration problems. For each solution, we report the cumulative discounted reward.

Sensitivity analysis
In the second experiment, we evaluate the sensitivity of our
approach to the correctness of the model. We compare three
variants of Algorithm structKBRL. The first variant knows
the underlying model pak = {k, k 	 1}. The second variant
has a simpler model, pak = {k}, and the third variant has a
more complex model, pak = {k, k 	 1, k 	 2}. Our results
are reported in Figure 3. We observe two major trends.

When the model is simpler, our algorithm initially learns
better policies but fails to converge to the optimal solutions.
Nevertheless, note that we learn 90% optimal policies in all
problems. When the model is more complex, our algorithm
initially learns worse policies but at the end converges to the
optimal solutions.

Conclusions
In this paper, we propose structured KBRL, a reinforcement
learning paradigm that combines structural assumptions and
kernelized value function approximations. We introduce this
concept, define a new structured backup operator, analyze it,
and show how to apply it computationally efficiently. Based
on our analysis, we propose a novel algorithm structKBRL.
We evaluate the algorithm on a synthetic problem and show

that it performs better than state-of-the-art KBRL baselines.
Our paper makes first steps in a new direction and naturally
we leave many questions open.

First, our experiments show that when a problem is struc-
tured, structured KBRL learns nearly optimal solutions from
an order of magnitude smaller sample than KBRL. It is only
natural to ask what is the convergence rate of our algorithm.
KBRL convergences at the rate of O(n−

1
2(K+2)) (Ormoneit

and Sen 2002), where K is the number of dimensions in the
state space X. Let ∆ be the largest of the dimensions of the
subspaces X[pak]. Then we expect Algorithm structKBRL

to converge at the rate of O(n−
1

2(∆+2)). This claim needs to
be proved.

Second, we assume that the state space X is discrete. It is
not obvious how to extend our results to continuous spaces.

Third, the time complexity of our method is O(|X|2) and
therefore it is not yet suitable for solving large problems. So
more approximations are necessary. One seemingly suitable
approximation is replacing the expectation over all possible
next states y by m representative states. This would reduce
the time complexity of our method to O(K(m2 + n)). The
quality of this approximation needs to be properly analyzed.

References
Barreto, A.; Precup, D.; and Pineau, J. 2011. Reinforcement
learning using kernel-based stochastic factorization. In Ad-
vances in Neural Information Processing Systems 24, 720–
728.
Bellman, R. 1957. Dynamic Programming. Princeton, NJ:
Princeton University Press.
Boutilier, C.; Dearden, R.; and Goldszmidt, M. 1995. Ex-
ploiting structure in policy construction. In Proceedings of
the 14th International Joint Conference on Artificial Intelli-
gence, 1104–1111.
Ernst, D.; Geurts, P.; and Wehenkel, L. 2005. Tree-based
batch mode reinforcement learning. Journal of Machine
Learning Research 6:503–556.
Fonteneau, R.; Murphy, S.; Wehenkel, L.; and Ernst, D.
2013. Batch mode reinforcement learning based on the syn-
thesis of artificial trajectories. Annals of Operations Re-
search.
Guestrin, C.; Koller, D.; Parr, R.; and Venkataraman, S.
2003. Efficient solution algorithms for factored MDPs. Jour-
nal of Artificial Intelligence Research 19:399–468.
Guestrin, C.; Koller, D.; and Parr, R. 2001. Max-norm pro-
jections for factored MDPs. In Proceedings of the 17th In-
ternational Joint Conference on Artificial Intelligence, 673–
682.
Jong, N., and Stone, P. 2006. Kernel-based models for re-
inforcement learning. In ICML 2006 Workshop on Kernel
Methods and Reinforcement Learning.
Koller, D., and Parr, R. 1999. Computing factored value
functions for policies in structured MDPs. In Proceedings
of the 16th International Joint Conference on Artificial In-
telligence, 1332–1339.
Kveton, B., and Theocharous, G. 2012. Kernel-based rein-
forcement learning on representative states. In Proceedings
of the 26th AAAI Conference on Artificial Intelligence, 977–
983.
Kveton, B.; Hauskrecht, M.; and Guestrin, C. 2006. Solv-
ing factored MDPs with hybrid state and action variables.
Journal of Artificial Intelligence Research 27:153–201.
Ormoneit, D., and Sen, S. 2002. Kernel-based reinforcement
learning. Machine Learning 49:161–178.
Puterman, M. 1994. Markov Decision Processes: Discrete
Stochastic Dynamic Programming. New York, NY: John
Wiley & Sons.
Sutton, R., and Barto, A. 1998. Reinforcement Learning:
An Introduction. Cambridge, MA: MIT Press.

